A numerical study of mass transfer of ozone dissolution in bubble plumes with an Euler-Lagrange Method
نویسندگان
چکیده
In this paper we study the mass transfer process of ozone dissolution in a bubble plume inside a rectangular water tank, as a model problem for a water purification system. The effect of bubble diameter and plume structure on mass transfer efficiency of ozone in bubble plumes is investigated numerically. In order to capture the detailed plume structure, interaction between liquid and bubbles is treated by a two-way coupling Euler-Lagrange method. The motion of the continuous phase (a mixture of liquid and gas bubbles) is solved using a finite difference method in an Eulerian framework. The motion of the dispersed phase (bubbles) is tracked individually in a Lagrangian fashion. The ozone transfer process from bubbles to liquid is computed by modelling the mass transfer rate of individual bubbles. Our numerical results show a nonlinear dependence of the ozone dissolution efficiency on the initial bubble size. The dissolution efficiency varies rapidly when the initial bubble size reaches certain value while the change of efficiency is much slower at other bubble sizes. Therefore, for a given tank size it is not necessary to generate bubbles much smaller than the optimal size. This result is of importance for engineering since it is difficult to generate small bubbles in practice. Our results also show that the instantaneous dissolution rate of ozone could be increased by increasing the initial volumetric fraction of ozone inside bubbles even up to 20% while maintaining the dissolution
منابع مشابه
An analytic study on the Euler-Lagrange equation arising in calculus of variations
The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...
متن کاملInfluence of mass transfer on bubble plume hydrodynamics.
This paper presents an integral model to evaluate the impact of gas transfer on the hydrodynamics of bubble plumes. The model is based on the Gaussian type self-similarity and functional relationships for the entrainment coefficient and factor of momentum amplification due to turbulence. The impact of mass transfer on bubble plume hydrodynamics is investigated considering different bubble sizes...
متن کاملEfficient numerical techniques for flow simulation in bubble column reactors
A dynamic Euler-Euler model for gas-liquid flows subject to mass transfer and simultaneous chemical reaction is assembled. The bubble size distribution is computed from an equation governing the evolution of average bubble mass. Highperformance finite element tools for numerical solution of the problem at hand are discussed. Computational results for the chemisorption of CO2 into NaOH shed some...
متن کاملA Numerical Euler-Lagrange Method for Bubble Tower CO2 Dissolution Modeling
While the processes taking place in a bubble reactor are simple to describe in a few sentences it is much more difficult to give a physical description that is useful for engineering purposes. A better understanding of a cluster of bubbles dissolving in a liquid where the species transferred reacts with other dissolved species is an interesting engineering challenge that could result in simplif...
متن کاملEvaluation of Recirculation Time in Bubble Train Flow by Using Direct Numerical Simulation
In this research, hydrodynamics of the Bubble Train Flows (BTF) in circular capillaries has been investigated by Direct Numerical Simulation (DNS).The Volume of Fluid Based (VOF) interface tracking method and streamwise direction periodic boundary conditions has been applied. The results show that there exists an appropriate agreement between DNS and experimental correlation results. The re...
متن کامل